Link Search Menu Expand Document

svd()

Singular value decomposition using QR iteration and inverse iteration algorithm.

The singular value decomposition (SVD) is a factorization of a real or complex matrix. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any m * n matrix.

Import

import * as datacook from '@pipcook/datacook';
const { svd } = datacook.Linalg;

Syntax

async svd(matrix: Tensor, tol: number, maxIter: number): Promise<Tensor>

Parameters

Parametertypedescription
matrixTensortarget matrix
tolnumbertolerence, default to 1e-4
maxIternumbermaximum iteration times, default to 200

Returns

[ u, d, v ], u: left singular vector, d: singluar values, v: right singular vector