Link Search Menu Expand Document

getF1Scores()

Compute the f1 score for all classes.

The F1 score can be interpreted as a harmonic mean of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is: 2 * precision * recall / (precision + recall)

Import

import * as datacook from '@pipcook/datacook';
const { getF1Scores } = datacook.Metrics;

Syntax

getF1Scores(yTrue: Tensor | string[] | number[], yPred: Tensor | string[] | number[]): number

Parameters

Parametertypedescription
yTureTensor | string[] | number[]True labels
yPredTensor | string[] | number[]Predicted labels

Returns

Tensor : f1 scores