getPrecisionScores()
Compute the precision score for all classes.
Precision score is the ratio tp / (tp + fp), where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0.
Import
import * as datacook from '@pipcook/datacook';
const { getPrecisionScores } = datacook.Metrics;
Syntax
getPrecisionScores(yTrue: Tensor | string[] | number[], yPred: Tensor | string[] | number[]): number
Parameters
Parameter | type | description |
---|---|---|
yTure | Tensor | string[] | number[] | True labels |
yPred | Tensor | string[] | number[] | Predicted labels |
Returns
Tensor
: precision scores