Link Search Menu Expand Document

Factor Analysis

Factor analysis is a technique that is used to reduce a large number of variables into fewer numbers of factors. This technique extracts maximum common variance from all variables and puts them into a common score. As an index of all variables, we can use this score for further analysis.

Import

import * as Datacook from 'datacook';
const { FactorAnalysis } = DataCook.Model;

Constructor

const fa = new FactorAnalysis({ nComponent: 5 });

Option parameters

parametertypedescription
nComponentsnumbernumber of components for decomposition
tolnumbertolenrence for iteration
maxIterTimesnumbermaximum iteration times

Properties

nComponents

number : number of compoennts

facorLoadings

Tensor : factor loadings after decompsition

Methods

fit

Fit factor analysis model according to given dataset.

Syntax

async fit(xData: Tensor | RecursiveArray<number>): Promise<Tensor>

Parameters

parametertypedescription
xDataTensor | RecursiveArrayinput dataset

Returns

Tensor : Factor loadings for given dataset

fromJson

Load model paramters from json string object

async fromJson(modelJson: string)

Parameters

parametertypedescription
modelJsonstringmodel json string

toJson

Export model paramters to json string

async toJson(): Promise<string>

Returns

String output of model json