Link Search Menu Expand Document

KNeighborClassifier

KNeighborClassifier is

Import

import * as Datacook from 'datacook';
const { KNeighborClassifier } = DataCook.Model;

Constructor

const kNeighborClassifier = new KNeighborClassifier({ nNeighbors: 4, leafSize: 3 });

Option Parameters

parametertypedescription
nNeighborsnumbernumber of neighbors for each sample
leafSizenumbernumber of samples in each tree node for BallTree or KDTree
weights“uniform” | “distance”weights methods for generating classification.
uniform: uniform weights;
distance: weight points for inverse of their distance. Closer neighbor will get higher weights in this case.
metric“euclidean” | “manhattan” | “minkowski”metrics for computing distance.
euclidean: euclidean distance;
manhattan: manhattan distance;
minkowski minkowski distance
pnumberpower parameter for Minkowski metric

Methods

fit

Syntax

async fit(xData: number[][] | Tensor2D, yData: number[] | string[] | boolean[] | Tensor1D): Promise<void>

Parameters

Parametertypedescription
xDataTensor2D| number[][]input data of shape (nSamples,nFeatures) in type of array or tensor
yDataTensor1D| number[] | string[] | boolean[] input target

predict

Make predictions using gradient boosting model.

async predict(xData: Tensor|RecursiveArray<number>): Promise<Tensor>

Parameters

parametertypedescription
xDataTensorRecursiveArray <number>

Returns

Promise of fitted values

fromJson

Load model paramters from json string object

async fromJson(modelJson: string)

Parameters

parametertypedescription
modelJsonstringmodel json string

toJson

Export model paramters to json string

async toJson(): Promise<string>

Returns

String output of model json